##plugins.themes.bootstrap3.article.main##

The objective of study was to isolate immunoglobulin (IgM) from the serum of tilapia found in Brazil, characterize its molecular mass, and evaluate it by serological tests. Results showed that IgM had a tetrameric structure with 81 kDa heavy chain and 40 kDa light chain, probably being another lineage of those described in scientific articles in other countries. Immuno-electrophoresis confirmed the IgM and, in the double diffusion agar test, the homologous reaction was observed. Elisa test was developed to quantify the IgM produced by tilapia. These techniques could be used in future tilapia projects involving vaccine production.

References

  1. Al-Habri A. H., Trawa R., Tune R. L. Production and characterization of monoclonal antibodies against tilapia Oreochromis niloticus immunoglobulin. Aquaculture, 2000, 188, 219-227. http://doi.org/10.1016/S0044-8486(00)00347-1.
     Google Scholar
  2. Bach, E. E., & Alba, A. P. C. (1993). Cross-reactive antigens between Xanthomonas campestris pv. citri pathotypes and citrus species. J. Phytopathology, 138, 84-88.
     Google Scholar
  3. Cooper, T G. (1981). Biochemische Arbeitsmethoden. Walter de Gruyter, Berlim, 415 p.
     Google Scholar
  4. Gudding R., Lillehaung A., Evensen O. (1999). Recent developments in fish vaccinology. Veterinary Immunology and Immunopathology, 1999, 72 (1/2), 203-212. http://doi.org/10.1016/s0165-427(99)00133-6.
     Google Scholar
  5. Havarstein L. S., Assjord P. M., Ness S., Endresen C. Purification and partial characterization of an IgM-like serum immunoglobulin from Atlantic salmon (Salmo salar). Developmental and Comparative Immunology, 1988, 12, 773-785. http://doi.org/10.1016/0145-305x(88)90052-3.
     Google Scholar
  6. Heuer,O. E., Kruse H., Grave K., Collignon P., Karunasagar I., Ângulo F. J. Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases, 2009, 49(8), 1248-1253. http://doi.org/10.1086/605667.
     Google Scholar
  7. IBGE- Instituto Brasileiro de Geografia e Estatística/PPM - Pesquisa da Pecuária municipal. Dados do SIDRA, (2019).https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2018.
     Google Scholar
  8. Kubitza, K., & Kubitza, L. M. M. (2000). Principais parasitoses e doenças dos peixes cultivados. Panorama da Aquicultura, 10 (60), 1-53. http://panoramadaaquicultura.com.br.
     Google Scholar
  9. Kuendee N., Klaynongsruang S., Bunyatratchata W., Tengjaroenku, B., Ngamcharoen K., Daduang J., et al. Ontogeny of Nile tilapia (Oreochromis niloticus) Immunoglobulin Type M Antibody Response. The Israeli Journal of Aquaculture, 2015, 67, 1214-1221. http://doi.org/10524/49215.
     Google Scholar
  10. Kumar, G., & Engle, C. R. (2016). Technological Advances that Led to Growth of Shrimp, Salmon, and Tilapia Farming. Reviews in Fisheries Science & Aquaculture, 24(2), 136-152. http://doi.org/10.1080/23308249.2015.1112357.
     Google Scholar
  11. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
     Google Scholar
  12. Leal, C. A. G. (2009). Vacinas orais e parenterais contra Flavobacterium columnare: avaliação da resposta imune humoral por Elisa e de sua eficiência na imunização de tilápia do nilo. [Master dissertation (Healthy animal) – Federal University Lavras, Lavras].
     Google Scholar
  13. Lowry O. H , Rosenbrough N. J., Farr A. L., Randall R. J. (1951). Protein measurement with the Folin phenol reagent. Journal Biological Chemistry, 1951, 193, 265-275.
     Google Scholar
  14. Nilsson, L. A. (1983). Double diffusion-in-gel. Scandinavian Journal of Immunology, 17 (Supplement 10), 57-68.
     Google Scholar
  15. Oliveira C. A. L., Resende K. E., Legat A. P. (2010). Melhoramento genético de peixes no Brasil: Situação atual e perspectivas. Congresso Brasileiro de Zootecnia, 20, Palmas. Anais... Palmas: ZOOTEC, 20, 237-249.
     Google Scholar
  16. Ouchterlony, D. (1958). Diffusion-in-gel methods for immunological analysis. Prog. Allergy, 5, 1-78.
     Google Scholar
  17. Ourth, D. D. (1986). Purification and quantification of channel catfish (Ictalurus punctatus) immunoglobulin M. Journal of Applied Ichthyology, 3, 140-143. http://doi.org/10.1111/j.1439-0426.1986.tb00441.x.
     Google Scholar
  18. Phillips, J. O., & Ourth, D. D. (1986). Isolation and molecular weight determination of two immunoglobulin heavy chains in the channel catfish, Ictalurus punctatus. Comparative Biochemistry and Physiology, 85B, 49-5.
     Google Scholar
  19. Pilstrom, L., & Bengten, E. (1996). Immunoglobulin in fish genes, expression and structure. Fish Shellfish Immunol., 6, 243-262. http://doi.org/10.1006/fsim.1996.0026.
     Google Scholar
  20. Resende E. K., Oliveira C. A. L., Ribeiro R. P. (2010). Melhoramento animal no Brasil: uma visão crítica espécies aquáticas. Simpósio Brasileiro de Melhoramento Animal, 8, Maringá. Anais. Maringá: SBMA.
     Google Scholar
  21. Silva, G.F., Maciel, L.M., Dalmass, M.V., Gonçalves, M.T. (2015). Tilápia-do-nilo. Criação e cultivo em viveiros no estado do Paraná. Curitiba, GIA (Grupo integrado a aquicultura), 209p.
     Google Scholar
  22. Straton, F., Smith, D. S., Rawlinson, V. I. Value of gel filtration on Sephadex G-200 in the analysis of blood group antibodies. J.Clin.Path., 1998, 21, 708-714. http://doi.org/10.1136/jcp.21.6.708.
     Google Scholar
  23. Van Muiswinkel, W. B. (1995). The piscine immune system: Innate and acquired immunity, In: Woo P.T.K., (Ed.), Fish diseases and disorders, CAB International, Wallingford, UK, 1, 729-750.
     Google Scholar
  24. Wilson, M. R., & Warr, G.W. (1992). Fish immunoglobulins and the genes that encode them, In: Faisal M., Hetrick F.M., (Eds.), Annual review of fish disease, Pergamon Press, Tarrytown, NY, USA, 2, 201-221.
     Google Scholar